Sixth Edition

Basic Skills in INTERPRETING LABORATORY DATA

Sixth Edition

Basic Skills in INTERPRETING LABORATORY DATA

Mary Lee, PharmD, BCPS, FCCP

Vice President Chief Academic Officer Pharmacy and Optometry Education Midwestern University Professor, Pharmacy Practice Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

Any correspondence regarding this publication should be sent to the publisher, American Society of Health-System Pharmacists, 4500 East-West Highway, Suite 900, Bethesda, MD 20814, attention: Special Publishing.

The information presented herein reflects the opinions of the contributors and advisors. It should not be interpreted as an official policy of ASHP or as an endorsement of any product.

Because of ongoing research and improvements in technology, the information and its applications contained in this text are constantly evolving and are subject to the professional judgment and interpretation of the practitioner due to the uniqueness of a clinical situation. The editors and ASHP have made reasonable efforts to ensure the accuracy and appropriateness of the information presented in this document. However, any user of this information is advised that the editors and ASHP are not responsible for the continued currency of the information, for any errors or omissions, and/or for any consequences arising from the use of the information in the document in any and all practice settings. Any reader of this document is cautioned that ASHP makes no representation, guarantee, or warranty, express or implied, as to the accuracy and appropriateness of the information contained in this document and specifically disclaims any liability to any party for the accuracy and/or completeness of the material or for any damages arising out of the use or non-use of any of the information contained in this document.

Editorial Project Manager, Books and eLearning Courses: Ruth Bloom Editorial Project Manager, Publications Production Center: Kristin Eckles Cover and Page Design: David Wade

Library of Congress Cataloging-in-Publication Data

Names: Lee, Mary (Mary Wun-Len), editor. | American Society of Health-System Pharmacists, issuing body.
Title: Basic skills in interpreting laboratory data / [edited by] Mary Lee.
Description: Sixth edition. | Bethesda, MD: American Society of Health-System Pharmacists, [2017] | Includes bibliographical references and index.
Identifiers: LCCN 2016016112 | ISBN 9781585285488
Subjects: | MESH: Clinical Laboratory Techniques | Reference Values | Clinical Laboratory Services
Classification: LCC RB37 | NLM QY 25 | DDC 616.07/5--dc23 LC record available at https://lccn.loc.gov/2016016112

© 2017, American Society of Health-System Pharmacists, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without written permission from the American Society of Health-System Pharmacists.

ASHP is a service mark of the American Society of Health-System Pharmacists, Inc.; registered in the U.S. Patent and Trademark Office.

ISBN: 978-1-58528-548-8

10987654321

DEDICATION

This book is dedicated to all of the chapter authors and reviewers, whose commitment to the education of future health professional students is evident in all that they do.

Mary Lee

CONTENTS

Acknowledgmer	ntsvii
Preface	viii
Contributors	X
Reviewers	xiii
Abbreviations	XV

PART I BASIC CONCEPTS AND TEST INTERPRETATIONS 1 CHAPTER 1 Definitions and Concepts 3 Karen J. Tietze 3 CHAPTER 2 Introduction to Common Laboratory Assays and Technology 19 Nicholas M. Moore 19

	Nicholas M. Moore	
CHAPTER 3	Primer on Drug Interferences with Test Results	43
	Mary Lee	
CHAPTER 4	Point-of-Care Testing	51
	Paul O. Gubbins and Heather Lyons-Burney	
CHAPTER 5	Substance Abuse and Toxicological Tests	69
	Peter A. Chyka	
CHAPTER 6	Interpretation of Serum Drug Concentrations	93
	Jaclyn A. Boyle, Riane J. Ghamrawi, and Janis J. MacKichan	
CHAPTER 7	Pharmacogenomics and Molecular Testing1	35
	Amber L. Beitelshees and Rosane Charlab	

PART II SYSTEM DISORDERS AND DIAGNOSTIC TESTS 149

CHAPTER 8	The Heart: Laboratory Tests and Diagnostic Procedures 151 Samir Y. Dahdal and Wafa Y. Dahdal
CHAPTER 9	Lipid Disorders 175 Jill S. Borchert and Kathy E. Komperda
CHAPTER 10	Endocrine Disorders
CHAPTER 11	The Kidneys 237 Dominick P. Trombetta 237
CHAPTER 12	Electrolytes, Other Minerals, and Trace Elements
CHAPTER 13	Arterial Blood Gases and Acid–Base Balance

v

CHAPTER 14	Pulmonary Function and Related Tests	315
	Lori A. Wilken and Min J. Joo	
CHAPTER 15	Liver and Gastroenterology Tests	329
	Paul Farkas, Joanna Sampson, Barry Slitzky, Brian Altman, Jason M. Altman, and Jamie Jensen	
CHAPTER 16	Hematology: Red and White Blood Cell Tests	369
	Paul R. Hutson	
CHAPTER 17	Hematology: Blood Coagulation Tests	393
	Lea E. Dela Peña	
CHAPTER 18	Infectious Diseases	421
	Rodrigo M. Burgos, Sharon M. Erdman, and Keith A. Rodvold	
CHAPTER 19	Rheumatologic Diseases	493
	Susan P. Bruce and Terry L. Schwinghammer	
CHAPTER 20	Cancers and Tumor Markers	517
	Patrick J. Medina and Sarah A. Schmidt	

PART III TESTS FOR SPECIAL POPULATIONS

CHAPTER 21	Interpreting Pediatric Laboratory Data Donna M. Kraus	547
CHAPTER 22	Women's Health Candi C. Bachour and Candace S. Brown	. 571
CHAPTER 23	Men's Health <i>Mary Lee and Roohollah Sharifi</i>	.593
Glossary		.623
Appendix A	Therapeutic Ranges of Drugs in Traditional and SI Units	.635
Appendix B	Nondrug Reference Ranges for Common Laboratory Tests in Traditional and SI Units	636
INDEX		639

545

ACKNOWLEDGMENTS

I express my sincere gratitude to the publishing staff at ASHP in the preparation of this book: Ruth Bloom, who assisted me 24-7 and answered my many e-mails; Amberly Hyden, who maintained all of the contract paperwork; Kristin Eckles, who has the best eyes for details; and Jack Bruggeman, who has consistently supported this project for more than a decade.

Mary Lee

PREFACE

The last four editions of *Basic Skills in Interpreting Laboratory Data* have been made possible by the dedicated chapter authors, reviewers, and the publishing staff at the American Society of Health-System Pharmacists. It has been my honor to serve as the editor and to work with this team.

For this sixth edition, approximately 90% of the lead authors have served in this capacity for the earlier editions with some exceptions. Paul O. Gubbins, PharmD, and Heather Lyons-Burney, PharmD, joined as the lead authors of a new chapter on Point-of-Care Testing, and Nicholas M. Moore, MS, MLS (ASCP), updated the chapter on Introduction to Common Laboratory Assays and Technology. All of the lead authors are established clinicians and/or experienced faculty at colleges of pharmacy or medicine, which enhance the quality of the chapter content.

A whole new group of reviewers has joined this project, and many reviewers are board-certified or established experts. Their specialty knowledge and scrutiny of the chapter content have helped to ensure that each chapter is up-to-date and content is relevant to clinical practice. As you use this book, you will find that the sixth edition includes updated chapter content with references, and almost all of the chapters have at least one new Minicase and Learning Point. In addition, the Abbreviations in the front of the book and the Glossary in the back have been expanded for reader convenience.

Significant and notable new chapter content:

- 1. Hematology: Blood Coagulation Tests includes expanded sections on laboratory tests to monitor direct thrombin inhibitors, direct oral anticoagulants, and low molecular weight heparin.
- 2. Hematology: Red and White Blood Cell Tests includes a discussion of cell types, associated cluster of differentiation epitopes or targets, and FDA-approved targeted therapies.
- 3. Infectious Diseases includes an expanded section on molecular diagnosis of specific viral nucleic acids and 1,3-β-glucan detection of fungi.
- 4. Liver and Gastroenterology Tests includes a new section on laboratory tests to diagnose and monitor hemochromatosis.
- 5. Interpretation of Serum Drug Concentrations includes information on new medications that have become commercially available since the last edition.
- 6. Men's Health includes an expanded section on PSA testing for screening, staging, and monitoring treatment of prostate cancer.

Suggestions for using this book efficiently:

- For a general overview of the laboratory tests for various organ systems or types of diseases, use the table of contents to identify the most appropriate section or chapter(s). The chapters are grouped into three major sections: Basic Concepts and Test Interpretations, System Disorders and Diagnostic Tests, and Tests for Special Populations. By reading the section or a chapter from start to finish, you get a detailed summary of the laboratory tests used to evaluate that organ system or disease, why the test is used, what a normal value range is for the test, and how to interpret an abnormal laboratory test result. Minicases guide the reader through common clinical scenarios about ordering appropriate laboratory tests, interpreting results, managing patients, and addressing spurious laboratory tests. Using the book in this way will be helpful, especially when used as a companion to a disease state management course, a pharmacotherapeutics course, or a course that prepares students for full-time clinical rotations.
- For information on a specific laboratory test, use the alphabetical index to locate the test, and then go to the page(s) to access the following information: the purpose of the test; how the test result relates to the pathophysiology of a disease or the physiologic function of a cell or organ;

the normal range for the test; causes for an abnormal test result; and causes of false-positive or false-negative results. This approach will be most useful in the clinical management of a patient.

• Quickview charts are provided for some of the most common laboratory tests. These charts are standardized template presentations of information that allow readers to quickly learn about a specific laboratory test (e.g., what the test is used for, what a normal result is, and causes of an abnormal result). This approach also will be most useful in the clinical management of a patient, but the Quickview content should be supplemented with the in-depth information in the chapters about a particular laboratory test. Although this book does not provide Quickview charts for all of the laboratory tests discussed, readers can refer to other clinical laboratory test handbooks, such as ASHP's *Interpreting Laboratory Data: A Point-of-Care Guide*.

The authors, reviewers, and I hope that *Basic Skills in Interpreting Laboratory Data* is useful to your practice.

Mary Lee May 2017

CONTRIBUTORS

EDITOR AND CONTRIBUTOR

Mary Lee, PharmD, BCPS, FCCP

Vice President Chief Academic Officer Pharmacy and Optometry Education Midwestern University Professor, Pharmacy Practice Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

CONTRIBUTORS

Brian Altman, MD

Western Mass GI Associates Springfield, Massachusetts

Jason M. Altman, DO

Department of Anesthesiology University of Connecticut Health Center Farmington, Connecticut

Candi C. Bachour, PharmD

Department of Clinical Pharmacy University of Tennessee Health Science Center Memphis, Tennessee

Jeffrey F. Barletta, PharmD, FCCM

Professor and Vice-Chair Department of Pharmacy Practice Midwestern University College of Pharmacy—Glendale Glendale, Arizona

Amber L. Beitelshees, PharmD, MPH, FAHA

Assistant Professor Division of Endocrinology, Diabetes, and Nutrition University of Maryland—Baltimore Baltimore, Maryland

Jill S. Borchert, PharmD, BCACP, BCPS, FCCP

Professor and Vice-Chair, Pharmacy Practice Director, PGY2 Ambulatory Care Residency Program Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

Jaclyn A. Boyle, PharmD, MS, MBA, BCPS

Assistant Professor for Community Pharmacy Innovation Pharmacy Practice Department Northeast Ohio Medical University Rootstown, Ohio

Candace S. Brown, PharmD, MSN

х

Professor of Clinical Pharmacy and Psychiatry University of Tennessee Health Science Center Memphis, Tennessee

Susan P. Bruce, PharmD, BCPS

Associate Dean of Pharmacy Education and Interprofessional Studies College of Pharmacy Chair and Professor Pharmacy Practice Northeast Ohio Medical University Rootstown, Ohio

Rodrigo M. Burgos, PharmD

Clinical Assistant Professor College of Pharmacy University of Illinois at Chicago Chicago, Illinois

Lingtak-Neander Chan, PharmD, BCNSP, FACN

Professor and Vice Chair Department of Pharmacy Interdisciplinary Faculty in Nutritional Sciences School of Pharmacy & Graduate Program in Nutritional Sciences University of Washington Seattle, Washington

Rosane Charlab, PhD

Genomics Group, Office of Clinical Pharmacology Office of Translational Sciences Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver Spring, Maryland

Peter A. Chyka, PharmD

Professor and Executive Associate Dean College of Pharmacy, Knoxville Campus The University of Tennessee Health Science Center Knoxville, Tennessee

Samir Y. Dahdal, MD, FACC

Noninvasive Cardiologist Tucson Heart Group Tucson Medical Center Tucson, Arizona

Wafa Y. Dahdal, PharmD, BCPS

Director of International Programs Associate Director of Professional Development American College of Clinical Pharmacy Lenexa, Kansas

Lea E. Dela Peña, PharmD, BCPS

Associate Professor, Pharmacy Practice Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

Sharon M. Erdman, PharmD

Clinical Professor of Pharmacy Practice Purdue University College of Pharmacy Infectious Diseases Clinical Pharmacist Eskenazi Health Indianapolis, Indiana

Paul Farkas, MD, AGAF, FACP

Chief of Gastroenterology Mercy Hospital Assistant Clinical Professor of Medicine Tufts University School of Medicine Springfield, Massachusetts

Riane J. Ghamrawi, PharmD, BCPS

Clinical Pharmacist Specialist Adult Antimicrobial Stewardship University Hospitals Cleveland Medical Center Cleveland, Ohio

Paul O. Gubbins, PharmD

Associate Dean Vice Chair and Professor Division of Pharmacy Practice and Administration UMKC School of Pharmacy at MSU Springfield, Missouri

Paul R. Hutson, PharmD, BCOP

Professor, Pharmacy Practice University of Wisconsin School of Pharmacy Madison, Wisconsin

Jamie Jensen, PharmD

Western Mass GI Associates Springfield, Massachusetts

Min J. Joo, MD, MPH, FCCP

Associate Professor of Medicine Department of Medicine University of Illinois at Chicago Chicago, Illinois

Kathy E. Komperda, PharmD, BCPS

Associate Professor, Pharmacy Practice Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

Donna M. Kraus, PharmD, FAPhA, FCCP, FPPAG

Associate Professor of Pharmacy Practice Departments of Pharmacy Practice and Pediatrics Colleges of Pharmacy and Medicine University of Illinois at Chicago Chicago, Illinois

Heather Lyons-Burney, PharmD

Clinical Assistant Professor UMKC School of Pharmacy at MSU Springfield, Missouri

Janis J. MacKichan, PharmD, FAPhA

Professor, Department of Pharmacy Practice Northeast Ohio Medical University Rootstown, Ohio

Patrick J. Medina, PharmD, BCOP

Associate Professor of Pharmacy University of Oklahoma College of Pharmacy Oklahoma City, Oklahoma

Nicholas M. Moore, MS, MLS (ASCP)^{CM}

Assistant Director Division of Clinical Microbiology Assistant Professor Department of Medical Laboratory Science Rush University Medical Center Chicago, Illinois

Keith A. Rodvold, PharmD, FCCP, FIDSA

Professor of Pharmacy Practice and Medicine Colleges of Pharmacy and Medicine University of Illinois at Chicago Chicago, Illinois

Joanna Sampson, MD

Western Mass GI Associates Springfield, Massachusetts

Sarah A. Schmidt, PharmD, BCPS, BCOP

Clinical Assistant Professor—Hematology/Oncology University of Oklahoma College of Pharmacy Oklahoma City, Oklahoma

Terry L. Schwinghammer, PharmD, BCPS, FASHP,

FAPhA, FCCP Professor and Chair Department of Clinical Pharmacy School of Pharmacy West Virginia University Morgantown, West Virginia

Roohollah Sharifi, MD, FACS

Section Chief of Urology Jesse Brown Veterans Administration Hospital Professor of Urology and Surgery University of Illinois College of Medicine Chicago, Illinois

Barry Slitzky, MD

Western Mass GI Associates Springfield, Massachusetts

Karen J. Tietze, PharmD

Professor of Clinical Pharmacy Department of Pharmacy Practice and Pharmacy Administration University of the Sciences Philadelphia College of Pharmacy Philadelphia, Pennsylvania

Dominick P. Trombetta, PharmD, BCPS, CGP, FASCP

Associate Professor, Pharmacy Practice Wilkes University Wilkes-Barre, Pennsylvania

Eva M. Vivian, PharmD, MS

Professor, Pharmacy Practice University of Wisconsin—Madison School of Pharmacy Madison, Wisconsin

Lori A. Wilken, PharmD, BCACP

Clinical Assistant Professor, Pharmacy Practice University of Illinois at Chicago College of Pharmacy Chicago, Illinois

REVIEWERS

Nabila Ahmed-Sarwar, PharmD, BCPS, CDE

Wegmans School of Pharmacy St. John Fisher College Clinical Pharmacy Specialist Department of Family Medicine University of Rochester School of Medicine and Dentistry Rochester, New York

Debra J. Barnette, PharmD, BCACP, BCPS

Assistant Professor of Pharmacy Practice The Ohio State University Columbus, Ohio

Scott J. Bergman, PharmD, BCPS

Antimicrobial Stewardship Coordinator Nebraska Medicine Clinical Associate Professor University of Nebraska Medical Center Omaha, Nebraska

Kristen Bova Campbell, PharmD, BCPS-AQ Cardiology, CPP

Clinical Pharmacist and Senior Research Associate, Electrophysiology Director, PGY2 Cardiology Residency Duke University Hospital Durham, North Carolina

Eric G. Boyce, PharmD

Associate Dean for Academic Affairs Professor of Pharmacy Practice Thomas J. Long School of Pharmacy and Health Sciences University of the Pacific Stockton, California

Larry W. Buie, PharmD, BCOP, FASHP

Clinical Specialist in Leukemia Memorial Sloan Kettering Cancer Center New York, New York

Shareen El-Ibiary, PharmD, BCPS, FCCP

Professor of Pharmacy Practice Department of Pharmacy Practice Midwestern University College of Pharmacy—Glendale Glendale, Arizona

Jacob Gettig, PharmD, MPH, BCPS, CHCP

Assistant Dean for Postgraduate Education Professor of Pharmacy Practice Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

Aaron P. Hartmann, PharmD, BCPS

Assistant Professor of Pharmacy Practice St. Louis College of Pharmacy St. Louis, Missouri

Julie M. Koehler, PharmD, FCCP

Associate Dean for Clinical Education and External Affiliations Professor of Pharmacy Practice Butler University College of Pharmacy and Health Sciences Indianapolis, Indiana

Larry J. Kricka, DPhil

Professor of Pathology and Laboratory Medicine The Hospital of the University of Pennsylvania Director, General Chemistry Director, Critical Care Laboratory Interim Director, Endocrine Laboratory University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania

Taimour Langaee, MSPH, PhD

Department of Pharmacotherapy and Translational Research Center for Pharmacogenomics University of Florida, College of Pharmacy Gainesville, Florida

Jacqueline L. Olin, PharmD, MS, BCPS, CDE, FASHP, FCCP

Professor of Pharmacy Wingate University School of Pharmacy Wingate, North Carolina

Carrie S. Oliphant, PharmD, FCCP, BCPS-AQ Cardiology, AACC

Cardiology/Anticoagulation Clinical Pharmacy Specialist Methodist University Hospital Associate Professor University of Tennessee College of Pharmacy Memphis, Tennessee

Frank P. Paloucek, PharmD, DABAT, FASHP

Clinical Professor, Pharmacy Practice College of Pharmacy University of Illinois at Chicago Chicago, Illinois

Theresa Prosser, Pharm D, FCCP, BCPS, AE-C

Professor of Pharmacy Practice Department of Pharmacy Practice St. Louis College of Pharmacy St. Louis, Missouri

Erin Raney, PharmD, BC-ADM, BCPS

Professor of Pharmacy Practice Midwestern University College of Pharmacy—Glendale Glendale, Arizona

Claire Saadeh, PharmD, BCOP

Professor, Pharmacy Practice Oncology, Pain Management, Palliative Care Ferris State University Department of Pharmacy Sparrow Health System Lansing, Michigan

Justin M. Schmidt, PharmD, BC-ADM, BCPS

Associate Professor, Pharmacy Practice Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

Carrie A. Sincak, PharmD, BCPS, FASHP

Assistant Dean for Clinical Affairs and Professor Midwestern University Chicago College of Pharmacy Downers Grove, Illinois

Curtis L. Smith, PharmD, BCPS Professor Ferris State University College of Pharmacy Sparrow Health System

Lansing, Michigan

James C. Thigpen, PharmD, BCPS Associate Professor

Department of Pharmacy Practice Bill Gatton College of Pharmacy East Tennessee State University Johnson City, Tennessee

Lori Wazny, PharmD, EPPh

Extended Practice Pharmacist—Manitoba Renal Program Department of Pharmaceutical Services Health Sciences Centre Winnipeg, Manitoba Canada

ABBREVIATIONS

μm	micrometer	ALL	acute lymphoblastic leukemia
1,25-DHCC	1,25-dihydroxycholecalciferol	ALP	alkaline phosphatase
17-OHP	17α-hydroxyprogesterone	ALT	alanine aminotransferase
²⁰¹ TI	thallium-201	AMA	antimitochondrial antibody
2,3 DPG	2,3-diphosphoglycerate	AMI	acute myocardial infarction
25-HCC	25-hydroxycholecalciferol	AML	acute myelogenous leukemia
3SR	self-sustained sequence replication	ANA	antinuclear antibody
5HT	serotonin	ANCA	antineutrophil cytoplasmic antibody
6-AM	6-acetylmorphine	ANF	atrial natriuretic factor
6MWT	6-minute walk test	ANP	atrial natriuretic peptide
^{99m} Tc	technetium-99m	anti-HAV IgG	IgG antibody against hepatitis A virus
²⁰¹ Tl	thallium-201 (radio isotope)	anti-HAV IgM	IgM antibody against hepatitis A virus
$\alpha_1 AC$	α1-antichymotrypsin	anti-HBc	antibody to hepatitis B core antigen
A-G6PD	glucose-6 phosphate dehydrogenase variant	anti-HbeAg	antibody to hepatitis B extracellular
Alc	glycosylated hemoglobin		antigen
A2M, α2M	α2-macroglobulin	anti-HBs	antibody to hepatitis B surface antigen
AACE	American Association of Clinical	anti-HCV	antibody against HCV antigen
	Endocrinologists	anti-HD	antibody against hepatitis D
AAG	α1-acid glycoprotein	APC	activated protein C
ABG	arterial blood gas	APC	antigen-presenting cell
ACA	anticentromere antibody	ароВ	apolipoprotein B
ACC	American College of Cardiology	APS	antiphospholipid antibody syndrome
ACCF	American College of Cardiology	aPTT	activated partial thromboplastin time
	Foundation	ARB	angiotensin receptor blocker
ACCP	American College of Clinical Pharmacy	ASA	aspirin
ACCP	anticyclic citrullinated peptide	ASCO	American Society of Clinical Oncology
ACE	angiotensin-converting enzyme	ASCVD	atherosclerotic cardiovascular disease
ACE-I	angiotensin-converting enzyme inhibitor	AST	aspartate aminotransferase
ACPA	anticitrullinated protein antibody	AT	antithrombin
ACR	albumin-to-creatinine ratio; American	ATP	adenosine triphosphate
	College of Rheumatology	ATP-K	adenosine triphosphate potassium
ACS	acute coronary syndrome	ATP	Adult Treatment Panel
ACT	activated clotting time; α 1-coded testing	ATP III	Adult Treatment Panel III
ACTH	adrenocorticotropic hormone	ATS	American Thoracic Society
	(corticotropin)	AUA	American Urological Association
ADA	American Diabetes Association	AUA-SI	American Urological Association Symptom
ADAM	androgen deficiency in aging males		Index
ADCC	antibody-dependent cellular cytotoxicity	AUC	area under the (serum concentration time)
ADH	antidiuretic hormone		curve
ADME	absorption, distribution, metabolism,	AV	atrioventricular
	excretion	AVP	arginine vasopressin
ADP	adenosine diphosphate	B&B	Brown and Brenn
AFB	acid-fast bacilli	B2M	β2-microglobulin
AFP	α-fetoprotein	BAL	bronchial alveolar lavage; bronchoalveolar
AG	anion gap		lavage
AGPA	allergic granulomatosis with polyangiitis	BAMT	blood assay for <i>Mycobacterium tuberculosis</i>
AHA	American Heart Association	BBT	basal body temperature
AIDS	acquired immunodeficiency syndrome	BCG	Bacillus Calmette-Guérin
ALK	anaplastic lymphoma kinase	bDNA	branched-chain DNA

BGMK-hDAF	buffalo green monkey kidney cell line decay	CGE	capillary gel electrophoresis
	accelerating factor	CH ₅₀	complement hemolytic 50%
BHI	brain heart infusion	CHD	coronary heart disease
BHR	bronchial hyper-responsiveness	CHF	congestive heart failure
BID	twice daily	CI	chemical ionization
BMI	body mass index	CIS	combined intracavernous injection and
BMP	basic metabolic panel		stimulation
BNP	brain natriuretic peptide	CK	creatine kinase
BP	blood pressure	CK-BB	creatine kinase isoenzyme BB
BPH	benign prostatic hyperplasia	CK-MB	creatine kinase isoenzyme MB
BPSA	benign form of prostate-specific antigen	CK-MM	creatine kinase isoenzyme MM
BPT	bronchial provocation testing	CK1	creatine kinase isoenzyme 1
BRAF	v-Raf murine sarcoma viral oncogene	CK2	creatine kinase isoenzyme 2
	homolog B1	CK3	creatine kinase isoenzyme 3
BSA	body surface area	CKD	chronic kidney disease
BSL	biosafety level	CKD-EPI	Chronic Kidney Disease Epidemiology
BT	bleeding time		Collaboration
BUN	blood urea nitrogen	CLIA-88	Clinical Laboratory Improvement
C. difficile	Clostridium difficile		Amendments of 1988
C3	complement protein 3	CLIA	Clinical Laboratory Improvement
C4	complement protein 4	_	Amendments
CA	cancer antigen	CLL	chronic lymphocytic leukemia
CA	carbonic anhydrase	CLSI	Clinical and Laboratory Standards Institute
CABG	coronary artery bypass graft	cm	centimeter
CA	corrected serum calcium level	CMA	cornmeal agar
CAD	coronary artery disease	C	minimum concentration (of a drug)
CAH	congenital adrenal hyperplasia	CMI	chronic myelogenous leukemia
CAN2	chromID Candida agar	CMP	comprehensive metabolic panel
cANCA	cytoplasmic antineutrophil cytoplasmic	CMR	cardiac magnetic resonance
CANCA	antibody	CMIX	cytomegalovirus
CAP	College of Pathologists	CNA	colistin-nalidixic acid
CAP	community-acquired pneumonia	C	normalized total concentration
CAT	computerized axial tomography	CNP	c-type natriuretic peptide
CA	uncorrected serum calcium level (or actual	CNS	central nervous system
uncorr	measured total serum calcium)	CO	carbon monoxide: cardiac output:
CBC	complete blood count	00	cycloovygenase
CCEA	cycloserine cefovitin fructose agar	CO	carbon diovide
CCNA	cell cytotoxicity neutralization assay	CO_2	carboxyhemoglobin
CCP	cyclic citrullinated pentide	COP	colloid osmotic pressure
CCP5	chemokine corecenter 5	COPD	chronic obstructive pulmonary disease
CCRD	cardiac C reactive protein	CDE	cytopathic offact
CCT	cardiac computed tomography	CPE	cytopathic effect
cc1	candida computed tomography		cilcium purophosphota dibudrata
CD	calleta		carcial pyrophosphate anyurate
CD	Content for Disease Control on d Descention	CPSA CrCl	
CDC	Centers for Disease Control and Prevention	CICI	creatinine clearance
CDK	complementarity-determining regions	CREST	syndrome characterized by <u>calcinosis</u> ,
CE	capillary electrophoresis		<u>R</u> aynaud disease, <u>e</u> sophageal motility
CEA	carcinoembryonic antigen	CDU	ansorder, scierodactyly, and telangiectasias
CEDIA	cioned enzyme donor immunoassay	CKH	corticotrophin-releasing hormone
CETP	cholesteryl ester transfer protein	CRP	C-reactive protein
CF	complement fixation	CSF	cerebrospinal fluid
CFTR	cystic fibrosis transmembrane conductance	C _{ss, avg}	average steady-state concentration (of a drug)
	regulator	CT	computed tomography
CFU, cfu	colony-torming units	cTnC	cardiac-specific troponin C
CFW	calcofluor white	cInl	cardiac-specific troponin l

cTnT	cardiac-specific troponin T	EGFR	epidermal growth factor receptor
CVD	cardiovascular disease	eGFR	estimated glomerular filtration rate
CX	circumflex	EF 	ejection fraction
CXCR4	CXC chemokine coreceptor	EI	electron ionization
СҮР	cytochrome P450 drug metabolizing	EIA	enzyme immunoassay
	enzymes	EIB	exercise- or exertion-induced
CYP2C19	cytochrome P450 2C19 enzyme		bronchospasm
CYP2D6	cytochrome P450 2D6 enzyme	EKG	electrocardiogram
CYP3A4	cytochrome P450 3A4 enzyme	ELISA	enzyme-linked immunosorbent assay
CYP450	cytochrome P450 enzyme	ELVIS	enzyme-linked virus-inducible system
CYP4F2	cytochrome P450 4F2 enzyme	EM	electron microscopy
CZE	capillary zone electrophoresis	EMB	eosin methylene blue
D&C	dilation and curettage	EMIT	enzyme-multiplied immunoassay technique
D5W	5% dextrose in water	EOF	electroosmotic force
DASH	<u>d</u> ietary <u>approaches</u> to <u>s</u> top <u>hypertension</u>	EPA	eicosapentaenoic acid
DAT	direct agglutination test	EPS	expressed prostatic secretions
DAT	direct antibody test	ER	estrogen receptor
DCCT	Diabetes Control and Complications Trial	ERS	European Respiratory Society
DCP	des-gamma-carboxyprothrombin	ERV	expiratory reserve volume
DDAVP	desmopressin	ESA	erythrocyte-stimulating agent
dTT	dilute thrombin time	ESBL	extended-spectrum β -lactamase
DDT	dichlorodiphenyltrichloroethane	ESC	European Society of Cardiology
DFA	direct fluorescent antibody	ESI	electrospray ionization
DHA	docosahexaenoic acid	ESR	erythrocyte sedimentation rate
DHEA	dehydroepiandrostenedione or	ESRD	end-stage renal disease
	dehydroepiandrosterone	Etest	epsilometer test
DHEAS	dehydroepiandrosterone sulfate	ETIB	enzyme-linked immunoelectrotransfer blot
DI	diabetes insipidus	EU	ELISA units
DIC	disseminated intravascular coagulation	EUCAST	European Committee on Antimicrobial
DIM	dermatophyte identification medium		Susceptibility Testing
DKA	diabetic ketoacidosis	EULAR	European League Against Rheumatism
dL	deciliter	FA	fluorescent antibody
DLCO	diffusing capacity of the lung for carbon	Fab	fraction antigen-binding
	monoxide	FAB	fast atom bombardment
DM	diabetes mellitus	FAB	French-American-British
DNA	deoxyribonucleic acid	FACS	fluorescence-activated cell sorting
DNP	dendroaspis natriuretic peptide	FALS	forward-angle light scattering
DO ₂	oxygen delivery	FANA	fluorescent antinuclear antibody
DOAC	direct oral anticoagulant	FDA	Food and Drug Administration
DPD	dihydropyrimidine dehydrogenase	FDP	fibrin degradation product
DPP-4	dipeptidyl peptidase-4	FEF ₂₅₋₇₅	forced expiratory flow at 25% to 75% of
dsDNA	double-stranded DNA		vital capacity
DST	dexamethasone suppression test	FEF	forced expiratory flow
DTI	direct thrombin inhibitor	FE _{Na}	fractional excretion of sodium
DTM	dermatophyte test medium	FENO	fractional exhaled nitric oxide
E2	estradiol	FEV_1	forced expiratory volume in 1 second
EBM	esculin base medium	FiO ₂	fraction of inspired oxygen
EBV	Epstein-Barr virus	FISH	fluorescence in situ hybridization
ECD	energy coupled dye	FITC	fluorescein isothiocyanate
ECG	electrocardiogram	fL	femtoliter
ECMO	extracorporeal membrane oxygenation	FM	Fontana-Masson
ECT	ecarin clotting time	FN	false negative
ECW	extracellular water	FP	false positive
ED	emergency department	FPG	fasting plasma glucose
EDTA	ethylenediaminetetraacetic acid	FPIA	fluorescence polarization immunoassay

fPSA	free prostate specific antigen	HER-2	human epidermal growth factor receptor 2
FRC	functional residual capacity	HEV	hepatitis E virus
FSH	follicle-stimulating hormone	HFpEF	heart failure with preserved ejection
FTA-ABS	fluorescent treponemal antibody absorption		fraction
FVC	forced vital capacity	HF <i>r</i> EF	heart failure with reduced ejection fraction
FWR	framework regions	HGA	human granulocytic anaplasmosis
g	gram	Hgb	hemoglobin
G-CSF	granulocyte colony-stimulating factor	HHS	hyperosmolar hyperglycemic state
G6PD	glucose-6 phosphate dehydrogenase	HIPA	heparin-induced platelet activation
GA	gestational age	HIT	heparin-induced thrombocytopenia
GADA	glutamic acid decarboxylase autoantibodies	HIV	human immunodeficiency virus
GAP	group A streptococcus	HIV-1	human immunodeficiency virus type 1
GAS	group A streptococci	HLA	human leukocyte antigen
GC	gas chromatography	HLA-B27	human leukocyte antigen B27
GC-MS	gas chromatography and mass spectrometry	HLA-DQ	human leukocyte antigen coded DQ genes
GERD	gastroesophageal reflux disease	HLAR	high-level aminoglycoside resistance
GF	Gridley fungus	HME	human monocytic ehrlichiosis
GFR	glomerular filtration rate	HMG-CoA	3-hydroxy-3-methyl-glutaryl-coenzyme A
GGT, GGTP	gamma-glutamyl transferase; gamma-	HMWK	high-molecular weight kininogen
	glutamyl transpeptidase	HPA	hypothalamic pituitary axis
GHB	gamma-hydroxybutyrate	HPF	high-power field
GI	gastrointestinal	HPLC	high-performance (or pressure) liquid
GIP	glucose-dependent insulinotropic peptide		chromatography
GLC	gas liquid chromatography	HPV	human papillomavirus
GLP-1	incretin hormones glucagon-like peptide-1	HR	heart rate
GLUT	glucose transporter	hr	hour
GM-CSF	granulocyte/macrophage colony-	hs-CRP	high-sensitivity C-reactive protein
	stimulating factor	HSG	hysterosalpingogram,
GMS	Gomori methenamine silver		hysterosalpingography
GnRH	gonadotropin-releasing hormone	hsTnI	high-sensitivity troponin I
GOLD	Global Initiative for Chronic Obstructive	hsTnT	high-sensitivity troponin T
	Lung Disease	HSV	herpes simplex virus
gp	glycoprotein	Ht	height
GPA	granulomatosis with polyangiitis	HTN	hypertension
GTF	glucose tolerance factor	Ι	intermediate
H&E	hematoxylin and eosin	IA	immunoassay
H. Pylori	Helicobacter pylori	IA-2A	insulinoma-associated-2 autoantibodies
HAAg	hepatitis A antigen	IAA	insulin autoantibodies
HAP	hospital-acquired pneumonia	IAT	indirect antibody test
HAV	hepatitis A virus	IBW	ideal body weight
Hb; hgb	hemoglobin	IC	inspiratory capacity
HbA1c	glycated hemoglobin	IC ₅₀	inhibitory concentration 50%
HBcAg	hepatitis B core antigen	IC	inhibitory concentration 90%
HBeAg	hepatitis B extracellular antigen	ICA	immunochromatographic assay
HBsAg	hepatitis B surface antigen	ICA	islet cell cytoplasmic autoantibodies
HBV	hepatitis B virus	ICTV	International Committee on Taxonomy of
hCG	human chorionic gonadotropin		Viruses
HCO,-	bicarbonate	ICU	intensive care unit
HCT, Hct	hematocrit	ICW	intracellular water
HCV	hepatitis C virus	ID	immunodiffusion
HDAg	hepatitis D antigen	IDC	International Diabetes Center
HDL	high-density lipoprotein	IDL	intermediate-density lipoproteins
HDL-C	high-density lipoprotein cholesterol	IDMS	isotope dilution mass spectrometry
HDV	hepatitis D virus	IFA	immunofluorescence assay; indirect
HER-1	human epidermal growth factor receptor 1		fluorescent antibody

IFN-γ	interferon gamma	LDL-C	low-density lipoprotein cholesterol
IgA	immunoglobulin A	LE	lupus erythematosus
IgD	immunoglobulin D	LFT	liver function test
IgE	immunoglobulin E	LH	luteinizing hormone
IgG	immunoglobulin G	LHRH	luteinizing hormone-releasing hormone
IgM	immunoglobulin M	LIS	laboratory information system
IHC	immunohistochemistry	LMP	last menstrual period
IHD	ischemic heart disease	LMWH	low molecular weight heparin
IIEF	International Index of Erectile Function	Lp(a)	lipoprotein(a)
IIM	idiopathic inflammatory myopathy	Lp-PLA ₂	lipoprotein-associated phospholipase A ₂
IMA	inhibitory mold agar	LPL	lipoprotein lipase
INR	international normalized ratio	LSD	lysergic acid diethylamide
IP	interphalangeal	LTA	light transmittance aggregometry
iPSA	inactive PSA	LUTS	lower urinary tract symptoms
IPSS	International Prostate Symptom Score	LVEF	left ventricular ejection fraction
IQ	inhibitory quotient	m	meter
IRMA	immunoradiometric assay	m^2	meters squared
IRV	inspiratory reserve volume	MAbs	monoclonal antibodies
ISE	ion-selective electrode	Mac	MacConkey
ISI	International Sensitivity Index	MAC	membrane attack complex
ITP	idiopathic thrombocytopenic purpura	MAC	<i>Mycobacterium avium</i> complex
IV	intravenous	MALDI	matrix-assisted laser desorption/ionization
I	ioule	MALDI-TOF	matrix-assisted laser desorption ionization
IIA	juvenile idiopathic arthritis		time-of-flight
IRA	juvenile rheumatoid arthritis	MAP	mitogen-activated protein
IVP	jugular venous pressure	MAT	microagglutination test
k	constant of proportionality	MBC	minimum bactericidal concentration
K	kelvin	MBP	mannose-binding protein
K	corrected serum potassium level	mcg	microgram
	Kidney Disease Improving Global	MCH	mean corpuscular hemoglobin
illillillillillillillillillillillillill	Outcomes	MCHC	mean corpuscular hemoglobin
kσ	kilogram		concentration
KIMS	kinetic interaction of microparticles in	MCP	metacarpophalangeal
101110	solution	MCT	medium chain triglycerides
Km	Michaelis constant	MCTD	mixed connective tissue disease
КОН	potassium hydroxide	MCV	mean corpuscular volume
KRas	V-Ki-ras2 Kirsten rat sarcoma viral	MDMA	3.4-methylenedioxy-N-methamphetamine
111110	oncogene homolog		(Ecstasy)
К	uncorrected serum potassium level (or	MDR	multidrug resistant
uncorr	actual measured serum potassium)	MDRD	Modification of Diet in Renal Disease
т	liter	MDx	molecular diagnostics
L	latex agglutination	mEa	milliequivalent
La/SSR	La/Siggren syndrome B	mg	milligram
	left anterior descending	MHA	Mueller-Hinton agar
IBBB	left bundle branch block	MHA-TP	microhemagglutination Treponema
LDDD	liquid chromatography	WILLY 11	pallidum
	lacithin cholostorol acultransforma	мнс	major histocompatibility complex
LCAI	ligase chain reaction	MI	major instocompationity complex
IDH	lactate dabydrogonasa	MIC	minimum inhibitory concentration
I DH1	lactate debydrogenase isoongyma 1	MIC	MIC value representing 50% of a bacterial
	lactate debudrogenase ise engume 2	50 still	nonulation
	lactate dehydrogenase isoenzyme 2	MIC	MIC value representing 000% of a bactorial
	lactate dehydrogenase isoenzyme 5	1 v11 C ₉₀	nonulation
	lactate dehydrogenase isoenzyme 4	MIE	population
	lactate denydrogenase isoenzyme 5	min	minute
LDL	low-density inpoprotein	111111	mmute

mL	milliliter	NYHA	New York Heart Association
mm	millimeter	OA	osteoarthritis
mm ³	cubic millimeter	OAT	organic anion transport
mmol	millimole	OATP1	organic anion-transporting polypeptide 1
mTOR	mammalian target of rapamycin	OATP2	organic anion-transporting polypeptide 2
moAb	monoclonal antibody	OCT	organic cation transport
mol	mole	OGTT	oral glucose tolerance test
MOTT	mycobacteria other than tuberculosis	OSHA	Occupational Safety and Health
MPO	myeloperoxidase		Administration
MPV	mean platelet volume	P,G,O,	one live birth, one pregnancy, no
MRI	magnetic resonance imaging	1 1 1	spontaneous or elective abortions
mRNA	messenger ribonucleic acid	P-gp	P-glycoprotein
MRO	medical review officer	Pa	Pascal
MRP1	multidrug resistant protein 1	pAB	polyclonal antibody
MRP2	multidrug resistant protein 2	PaCO	partial pressure of carbon dioxide, arterial
MRP3	multidrug resistant protein 3	PAD	peripheral arterial disease
MRSA	methicillin-resistant Stathylococcus aureus	PAE	postantibiotic effect
MS	mass spectrometry	PAI1	plasminogen activator inhibitor 1
MSSA	methicillin-suscentible Stathylococcus	nANCA	perinuclear antineutrophil cytoplasmic
110071	auraus	princh	antibody
mTOP	mammalian (or mechanistic) target of	D ₂ O	partial pressure of ovvgen arterial
miok	ranamycin		periodic acid Schiff
МТР	metatarsonhalangaal	PRC	primary biliary cirrhocia
N	newton	DBMC	parinharal blood monopuclear call
IN NIA	newton pucloic acid	DRD	peripheral blood mononuclear cen
	nucleic acid amplification test	PDF DC FEV	provocation concentration of the
NACP	National Academy of Clinical Piochemiotry	$\Gamma C_{20} \Gamma L V_1$	bronch a constrictor agont that produces a
NACD	National Actuality of Chinical Diochemistry		200% reduction in EEV
NALFF	Drogram		20% reduction in FEV ₁
NIACDA	Piogram	PCA	posiconceptional age
NASDA	nucleic acid sequence-based amplification	rCI rCO	percutations coronary intervention
NASH	nondibudronyriding calcium channel		partial pressure of carbon dioxide
NCCD	honomydropyfianie calciuni channei	PCO3	polycystic ovary syndrome
NCED	National Chalastaral Education Drogram	PCP	polymoreae chain reaction
NCEP	National Cholesteror Education Program	PCR	polymerase cham reaction
ng NU U	Nan Hadakin kumuhanaa	PCSK9	
NIL NK collo	Non-Hodgkin lymphoma		type 9
NK Cells	National Kidney Disease Education	PD DDA	
INKDEP	National Kidney Disease Education	PDA	polato dexifose agai
NVE VDOOI	Piografii National Kidney Foundation Kidney	PE Deals	Phycoel yullill Deals concentration of a drug in comm
NKF KDOQI	Diagona Quitager of Quality Initiative	steady state	Peak concentration of a drug in serum
NIL A	National Linid Association		of plasfild
INLA	National Lipid Association	PEA	
IIIII NINIDTTI		PEFK	peak expiratory now rate
ININKII	in hit is a	PE1 DE2	positron emission tomography
NINIC			platelet factor 5
ININS NOO1	NADDL asia and debada and a	PF4	platelet factor 4
NQUI	NADPH quinone denydrogenase 1	PFA	potato nake agar
NQMI	non Q-wave myocardial infarction	PFGE	pulsed-field gel electrophoresis
NKII	nucleoside reverse transcriptase infibitor	PFI	pulmonary function test
NSAID	nonsteroidal anti-inflammatory drug	pg	picogram
INSCLU	non-small-cell lung cancer	PG DC2	prostagiandin
1N91 E1VII	non-51-segment elevation myocardial	PG2	prostacyclin
NT map DND	Interction	рн	power of nydrogen or nydrogen ion
IN I-PROBINE	in-terminal-probing	DLIV	concentration
1N 1 IVI	nontuberculous mycobacteria	ГПІ	phenytoin

Ph	Philadelphia	RI	reticulocyte index
PICU	pediatric intensive care unit	RIA	radioimmunoassay
PID	pelvic inflammatory disease	RIBA	recombinant immunoblot assay
PIP	proximal interphalangeal	RIDTs	rapid influenza diagnostic tests
РК	pharmacokinetic	RNA	ribonucleic acid
PKU	phenylketonuria	RNP	ribonucleoprotein
PL	phospholipid	Ro/SSA	Ro/Sjögren syndrome A antibody
PMA	postmenstrual age	RPF	renal plasma flow
PMN	polymorphonuclear leukocyte	RPR	rapid plasma reagin
PNA	postnatal age	RR	respiratory rate
PNA-FISH	peptide nucleic acid fluorescent in situ	RSA	rapid sporulation agar
	hybridization	RSAT	rapid streptococcal antigen test
PO	per os (by mouth)	RSV	respiratory syncytial virus
pO.	partial pressure of oxygen	RT	reverse transcriptase: reverse transcription
POC	point-of-care	RT-PCR	reverse-transcriptase polymerase chain
POCT	point-of-care testing		reaction
PPAR	peroxisome proliferator-activated receptor	RV	residual volume
PPD	purified protein derivative	S	susceptible
PPG	postprandial glucose	S Cvs C	serum cystatin C
PPI	proton pump inhibitor	S:P ratio	saliva:plasma concentration ratio
PR	progesterone receptor	SA	sinoatrial
PR3	proteinase 3	SaO	arterial oxygen saturation
PRN	as needed		Substance Abuse and Mental Health
PRU	P2Y12 reaction units	0/11/11/0/1	Services Administration
PSA	prostate specific antigen	SAT	serum agglutination test
PSAD	prostate specific antigen density	SRA	sheen blood agar
PSR	protected specimen brush	SBT	serum bactericidal test
PSM	patient self-management	Scl	scleroderma-70 or DNA topoisomerase I
PST	patient self_testing	70	antibody
PT	prothrombin time	SCr	serum creatinine
	percutaneous transluminal coronary	ScrO	central venous ovvgen saturation
110/1	angionlasty	SD SD	standard deviation
ртн	parathyroid hormone	SD4	Sabouraud devtrose agar
1 1 1 1 a		SDA	strand displacement amplification
Ч О	perfusion	SDA	second
Q	quality control	SECA	subenendymal giant cell astrocytoma
OID	four times daily	SCE	subependymai giant cen astrocytoma
	real time polymorese chain reaction	SGL	spiral gradient endpoint
OPS	alactrocardiograph wave, represente	SUBC	sou hormono binding globulin
QKS	vontricular depolarization	SIIDG	International System of Units
OwMI	O wave myo cardial infanction		amdromo of incorrection of Units
QWMI	Q-wave myocardial infarction	SIADH	bormone of mappropriate antidiuretic
R D CWA	resistant	CID	strong inon difference
R-CVA	right cerebral vascular accident	SIC	strong ion con
RA	meumatoid artifitis	SIG	strong ion gap
RAAS	renin-angiotensin-aldosterone system	SLE	Systemic lupus erythematosus
RADI	rapid antigen detection test	SIII	silf manifesting black debages
RAED	refractory anemia with excess blasts	SMBG	self-monitoring blood glucose
RAIU	radioactive iodine uptake test	SINP	single nucleotide polymorphism
RALS	right-angle light scattering	SINKI	serotonin–norepinephrine reuptake
KDU DDE	rea blood cell	CODID	IIIIIDITOR
KDF DCA	renal blood flow	SDECT	sinali nuclear ribonucleoprotein particle
KCA DDW	right coronary artery	SPECI	single-photon emission computed
KDW DE	rea cell distribution Width	CDED	iomography
KF DI MIZ	rneumatoia factor	SPEP	serum protein electrophoresis
KhMK	rnesus monkey kidney	SKA	C-serotonin release assay

ssDNA	single-stranded DNA	TT	thrombin time
SSRI	selective serotonin reuptake inhibitor	TTE	transthoracic echocardiography
STD	sexually transmitted disease	TTP	thrombotic thrombocytopenic purpura;
STEMI	ST segment elevation myocardial infarction		total testing process
SV	stroke volume	TTR	time in therapeutic range
SVC	slow vital capacity	TV	tidal volume
SvO ₂	venous oxygen saturation	$T_x A_2$	thromboxane A ₂
T ₃	triiodothyronine	type 1 DM	type 1 diabetes mellitus
T ₃ RU	triiodothyronine resin uptake	type 2 DM	type 2 diabetes mellitus
T ₄	thyroxine	U	urinary creatinine concentration
TAT	turnaround time	U ₁ RNP	uridine-rich ribonuclear protein
ТВ	tuberculosis	UA	unstable angina
TBG	thyroxine-binding globulin	UCr	urine creatinine
TBI	total body irradiation	UFC	urine-free cortisol
TBPA	thyroid-binding prealbumin	UFH	unfractionated heparin
TBW	total body water	UGT1A1	uridine diphosphate glucuronyl
TBW	total body weight		transferase
TC	total cholesterol	UKPDS	United Kingdom Prospective Diabetes
TCA	tricyclic antidepressant		Study
TDM	therapeutic drug monitoring	ULN	upper limit of normal
TEE	transesophageal echocardiography	uNGAL	urine neutrophil gelatinase associated
TF	tissue factor		lipocalcin
TFPI	tissue factor pathway inhibitor	uPA	urokinase plasminogen activator
TG	triglyceride	UTI	urinary tract infection
THC	total hemolytic complement	UV	ultraviolet
TIA	transient ischemic attack	V	total urine volume collected; ventilation;
TIBC	total iron-binding capacity		volt
TID	three times daily	VAP	ventilator-associated pneumonia
TJC	The Joint Commission	VC	vital capacity
TK	tyrosine kinase	Vd	volume of distribution
TKI	tyrosine kinase inhibitor	VDRL	Venereal Disease Research Laboratory
TLA	total laboratory automation	VISA	vancomycin-intermediate Staphylococcus
TLC	therapeutic lifestyle changes		aureus
TLC	thin layer chromatography	VKORC1	vitamin K epoxide reductase complex
TLC	total lung capacity		subunit 1
TMA	transcription mediated amplification	VLDL	very low-density lipoprotein
TN	true negative	V _{max}	maximum rate of metabolism
TnC	troponin C	VPA	valproic acid
TNF	tumor necrosis factor	VO ₂	oxygen consumption
TnI	troponin I	VRE	vancomycin-resistant enterococci
TnT	troponin T	VTE	venous thromboembolism
ТР	true positive; tube precipitin	vWF	von Willebrand factor
tPA	tissue plasminogen activator	VZV	varicella zoster virus
TPMT	thiopurine methyltransferase	W	watt
TPN	total parenteral nutrition	WB	western blot
TR	therapeutic range	WBC	white blood cell
TRH	thyrotropin-releasing hormone	WHO	World Health Organization
TRUS	transrectal ultrasound of the prostate	WNL	within normal limits
TSB	trypticase soy broth	Wt	weight
TSH	thyroid-stimulating hormone	WT	wild type
TST	tuberculin skin test	yr	year

PART I

BASIC CONCEPTS AND TEST INTERPRETATIONS

1.	Definitions and Concepts3 <i>Karen J. Tietze</i>
2.	Introduction to Common Laboratory Assays and Technology
3.	Primer on Drug Interferences with Test Results43 Mary Lee
4.	Point-of-Care Testing51 <i>Paul O. Gubbins and Heather Lyons-Burney</i>
5.	Substance Abuse and Toxicological Tests
6.	Interpretation of Serum Drug Concentrations
7.	Pharmacogenomics and Molecular Testing

DEFINITIONS AND CONCEPTS

Karen J. Tietze

OBJECTIVES

After completing this chapter, the reader should be able to

- Differentiate between accuracy and precision
- Distinguish between quantitative, qualitative, and semiqualitative laboratory tests
- Define reference range and identify factors that affect a reference range
- Differentiate between sensitivity and specificity, and calculate and assess these parameters
- Identify potential sources of laboratory errors and state the impact of these errors in the interpretation of laboratory tests
- Identify patient-specific factors that must be considered when assessing laboratory data
- Discuss the pros and cons of point-of-care and at-home laboratory testing
- Describe a rational approach to interpreting laboratory results

Laboratory testing is used to detect disease, guide treatment, monitor response to treatment, and monitor disease progression. However, it is an imperfect science. Laboratory testing may fail to identify abnormalities that are present (false negatives [FNs]) or identify abnormalities that are not present (false positives [FPs]). This chapter defines terms used to describe and differentiate laboratory tests and describes factors that must be considered when assessing and applying laboratory test results.

DEFINITIONS

Many terms are used to describe and differentiate laboratory test characteristics and results. The clinician should recognize and understand these terms before assessing and applying test results to individual patients.

Accuracy and Precision

Accuracy and precision are important laboratory quality control measures. Laboratories are expected to test analytes with accuracy and precision and to document the quality control procedures. Accuracy of a quantitative assay is usually measured in terms of analytical performance, which includes accuracy and precision. Accuracy is defined as the extent to which the mean measurement is close to the true value. A sample spiked with a known quantity of an analyte is measured repeatedly; the mean measurement is calculated. A highly accurate assay means that the repeated analyses produce a mean value that is the same as or very close to the known spiked quantity. Accuracy of a qualitative assay is calculated as the sum of the true positives (TPs) and true negatives (TNs) divided by the number of samples tested (accuracy = $[(TP + TN) \div number of samples tested] \times 100\%$). Precision refers to assay reproducibility (i.e., the agreement of results when the specimen is assayed many times). An assay with high precision means the methodology is consistently able to produce results in close agreement. The accuracy of those results is a separate issue.

Analyte

The *analyte* is the substance measured by the assay. Some substances, such as phenytoin and calcium, are bound extensively to proteins such as albumin. Although the unbound fraction elicits the physiological or pharmacological effect (bound substances are inactive), most routine assays measure the total substance (bound plus unbound). The free fraction may be assayable, but the assays are not routine. Therefore, the reference range for total and free substances may be quite different. For example, the reference range is 10–20 mcg/mL for total phenytoin, 1–2 mcg/mL for free phenytoin, 9.2–11 mg/dL for total serum calcium, and 4–4.8 mg/dL for free (also called *ionized*) calcium.

Some analytes exist in several forms and each has a different reference range. These forms are referred to as *fractions*, *subtypes*, *subforms*, *isoenzymes*, or *isoforms*.

Note: This chapter is based, in part, on the second edition chapter titled "Definitions and Concepts" by Scott L. Traub. Results for the total and each form are reported. For example, bilirubin circulates in conjugated and unconjugated subforms as well as bound irreversibly to albumin (delta bilirubin). *Direct bilirubin* refers to the sum of the conjugated plus the delta forms (water soluble forms); *indirect bilirubin* refers to the unconjugated form (water insoluble form). Lactate dehydrogenase (LDH) is separated electrophoretically into five different isoenzymes: LDH1, LDH2, LDH3, LDH4, and LDH5. Creatine kinase (CK) exists in three isoforms: CK-BB (CK1), CK-MB (CK2), and CK-MM (CK3).

Biomarker

A *biomarker* (biological marker) is a marker (not necessarily a quantifiable laboratory parameter) defined by the National Institutes of Health as "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention."¹ Biomarkers are used to diagnose and stage disease (i.e., determine the extent of disease), assess disease progression, and predict or assess response to therapeutic interventions. Tumor markers are biomarkers used to identify the presence of some cancers, to stage disease, or to assess patient response to drug and nondrug cancer treatments. Many biomarkers are common laboratory parameters. For example, glycated hemoglobin A1c (HbA1c) is used to assess long-term glucose control in patients with diabetes.

Noninvasive Versus Invasive Tests

A *noninvasive test* is a procedure that examines fluids or other substances (e.g., urine and exhaled air) obtained without using a needle, tube, device, or scope to penetrate the skin or enter the body. An *invasive test* is a procedure that examines fluids or tissues (e.g., venous blood and skin biopsy) obtained by using a needle, tube, device, or scope to penetrate the skin or enter the body. Invasive tests pose variable risk depending on the method of specimen collection (e.g., pain and bruising associated with venipuncture) and are less convenient than noninvasive tests.

Predictive Value

The predictive value, derived from a test's sensitivity, specificity, and prevalence (incidence) of the disease in the population being tested, is used to assess a test's reliability (Table 1-1). As applied to a positive test result, the predictive value indicates the percent of positives that are TPs. For a test with equal sensitivity and specificity, the predictive value of a positive result increases as the incidence of the disease in the population increases. For example, the glucose tolerance test has a higher predictive value for diabetes in women who are pregnant than in the general population. A borderline abnormal serum creatinine (SCr) concentration has a higher predictive value for kidney disease in patients in a nephrology unit than in patients in a general medical unit. The lower the prevalence of disease in the population tested, the greater the chance that a positive test result is in error. The predictive value may also be applied to negative results. As applied to a negative test result,

TABLE 1-1. Relationship of Sensitivity, Specificity, DiseasePrevalence, and Predictive Value of Positive Test^{a,b}

SENSITIVITY AND SPECIFICITY (%)	PREVALENCE (%)	PREDICTIVE VALUE OF POSITIVE TEST (%)
95	0.1	1.9
	1	16.1
	2	27.9
	5	50
	50	95
99	0.1	9
	1	50
	2	66.9
	5	83.9
	50	99

^aThe predictive value of a positive test increases as the disease prevalence and sensitivity and specificity of the test increase. ^bPredictive value of positive test = [TP \div (TP + FP)] x 100%. Predictive value of negative test = [TN \div (TN + FN)] x 100%. Disease prevalence = (TP + FN) \div number of patients tested. FN = diseased persons not detected by test (false negatives); FP = nondiseased persons positive to test (false positives); TN = nondiseased persons negative to test (true negatives); and TP = diseased persons detected by test (true positives).

the predictive value indicates the percent of negatives that are TNs (**Minicase 1**).

Qualitative Tests

A *qualitative test* is a test whose results are reported as either positive or negative without further characterization of the degree of positivity or negativity. Exact quantities may be measured in the laboratory but are still reported qualitatively using predetermined ranges. For example, a serum or urine pregnancy test is reported as either positive or negative; a bacterial wound culture is reported as either positive for one or more specific microorganisms or reported as no growth; a urine toxicology drug screen is reported as either positive or negative for specific drugs; a hepatitis C viral ribonucleic acid (RNA) test is reported as positive or negative for hepatitis C viral RNA; and an acid-fast stain for *Mycobacterium* is reported as either positive or negative.

Quantitative Tests

A *quantitative test* is a test whose results are reported as an exact numeric measurement (usually a specific mass per unit measurement) and assessed in the context of a reference range of values. For example, serum potassium is reported in milliequivalents per liter, creatinine clearance (CrCl) is reported in milliliters per minute, and LDH is reported in units per liter. Some test results are reported as titers (dilutions). A serum antinuclear antibody titer of 1:160 is usually associated with active systemic lupus erythematosus or other autoimmune diseases, although some patients may have "low titer" disease with titers of 1:40 or 1:80.

MINICASE 1

Rapid Streptococcal Antigen Test

In 453 patients with acute pharyngitis symptoms, detection of group A β -hemolytic streptococci with a commercial rapid antigen detection test and standard throat culture are compared.² The package insert for the rapid streptococcal antigen test (RSAT) notes a sensitivity of 95% and a specificity of 98% when used according to the manufacturer instructions.

QUESTION: After reviewing the following results, what conclusions can be made about the clinical performance of the RSAT?

RSAT	Results	(<i>n</i> = 453):
------	---------	--------------------

True Positives	51	True Negatives	362
False Positives	12	False Negatives	28

DISCUSSION: Calculate sensitivity, specificity, predictive value of a positive test, and the predictive value of a negative test.

Sensitivity = (TP ÷ [TP + FN]) × 100% = (51 ÷ [51 + 28]) × 100% = 64.6%

Specificity = (TN ÷ [TN + FP]) × 100% = (362 ÷ [362 + 12]) × 100% = 96.8%

Predictive value of positive test = (TP \div [TP + FP]) × 100% = (51 \div [51 + 12]) × 100% = 81%

Predictive value of negative test = $(TN \div [TN + FN]) \times 100\% = (362 \div [362 + 28]) \times 100\% = 92.8\%$

In this study, RSAT has a lower specificity and sensitivity than reported by the manufacturer; the sensitivity depends on proper throat swab collection. Appropriate healthcare training is important to achieve and maintain maximum sensitivity and positive predictive value of the test.

Reference Range

The *reference range* (also known as the *reference interval* or the *reference value*) is a statistically-derived numerical range obtained by testing a sample of individuals assumed to be healthy. The upper and lower limits of the range are not absolute (i.e., normal versus abnormal) but rather points beyond which the probability of clinical significance begins to increase. The term *reference range* is preferred over the term *normal range.*³ The reference population is assumed to have a Gaussian distribution with 68% of the values within one standard deviation (SD) above and below the mean, 95% within ±2 SD, and 99.7% within ±3 SD (**Figure 1-1**).

The reference range for a given analyte is usually established in the clinical laboratory as the mean or average value plus or minus two SDs. Acceptance of the mean ± 2 SD indicates that one in 20 normal individuals will have test results outside the reference range (2.5% have values below the lower limit of the reference range, and 2.5% have values above the upper limit of the reference range). Accepting a wider range (e.g., ± 3 SD) includes a larger percentage (99.7%) of normal individuals but increases the chance of including individuals with values only slightly outside of a more narrow range, thus decreasing the sensitivity of the test.

Qualitative laboratory tests are either negative or positive and without a reference range; any positivity is considered abnormal. For example, any amount of serum acetone, porphobilinogen, or alcohol in serum or plasma is considered abnormal. The presence of glucose, ketones, blood, bile, or nitrate in urine is also abnormal. The results of the VDRL (Veneral Disease Research Laboratory) test, tests for red blood cell (RBC) sickling, and the malaria smear are either positive or negative.

FIGURE 1-1. Gaussian (random) value distribution with a visual display of the area included within increments of standard deviation (SD) above and below the mean: ± 1 SD = 68% of total values; ± 2 SD = 95% of total values; and ± 3 SD = 99.7% of total values.

Factors That Influence the Reference Range

Many factors influence the reference range. Reference ranges may differ between labs depending on analytical technique, reagent, and equipment. The initial assumption that the sample population is normal may be false. For example, the reference range is inaccurate if too many individuals with covert disease (i.e., no signs or symptoms of disease) are included in the sample population. Failure to control for physiologic variables (e.g., age, gender, ethnicity, body mass, diet, posture, and time of day) introduces many unrelated factors and may result in an inaccurate reference range. Reference ranges calculated from nonrandomly distributed (non-Gaussian) test results or from a small number of samples may not be accurate.

Reference ranges may change as new information relating to disease and treatments becomes available. For example, the National Cholesterol Education Program's 2002 Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) lowered and more closely spaced reference range cutoff points for low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TGs) and recommended dose-adjusted drug therapy to achieve specific cholesterol goals.⁴ Based on newer evidence, the 2013 American College of Cardiology/American Heart Association Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults does not recommend specific LDL-C treatment targets.⁵ The generally accepted upper limit of normal (ULN) for thyroidstimulating hormone (TSH) (4.12 mIU/L) is based on data from the National Health and Nutrition Examination Survey.6 But the availability of more sensitive assays and the recognition that the original reference population data were skewed has led some clinicians to conclude that the ULN for TSH should be lowered.7

Critical Value

The term *critical value* refers to a result that is far enough outside the reference range that it indicates impending morbidity (e.g., potassium <2.8 mEq/L). Because laboratory personnel are not in a position to consider mitigating circumstances, a responsible member of the healthcare team is notified immediately on discovery of a critical value test result. Critical values may not always be clinically relevant because the reference range varies for the reasons discussed above.

Semiquantitative Tests

A *semiquantitative test* is a test whose results are reported as either negative or with varying degrees of positivity but without exact quantification. For example, urine glucose and urine ketones are reported as negative or 1+, 2+, 3+; the higher numbers represent a greater amount of the measured substance in the urine but not a specific concentration.

Sensitivity

The *sensitivity* of a test refers to the ability of the test to identify positive results in patients who actually have the disease (TP rate).^{8,9} Sensitivity assesses the proportion of TPs disclosed by the test (**Table 1-2**). A test is completely sensitive (100% sensitivity) if it is positive in every patient who actually has the

TABLE 1-2. Calculation of Sensitivity and Specificity^a SCREENING NOT **TEST RESULT** DISEASED DISEASED TOTAL TP + FP Positive TΡ FP ΤN Negative FN FN + TN Total TP + FN FP + TN TP + FP + FN + TN

FN = diseased persons not detected by test (false negatives); FP = nondiseased persons positive to test (false positives); TN = nondiseased persons negative to test (true negatives); TP = diseased persons detected by test (true positives).

^aSensitivity = [TP + (TP + FN)] x 100%. Specificity = [TN + (TN + FP)] x 100%.

disease. The higher the test sensitivity, the lower the chance of a false-negative result; the lower the test sensitivity, the higher the chance of a false-negative result. However, a highly sensitive test is not necessarily a highly specific test (see below).

Highly sensitive tests are preferred when the consequences of not identifying the disease are serious; less sensitive tests may be acceptable if the consequence of an FN is less significant or if low sensitivity tests are combined with other tests. For example, inherited phenylalanine hydroxylase deficiency (phenylketonuria [PKU]) results in increased phenylalanine concentrations. High phenylalanine concentrations damage the central nervous system and are associated with mental retardation. Mental retardation is preventable if PKU is diagnosed and dietary interventions initiated before 30 days of age. The phenylalanine blood screening test, used to screen newborns for PKU, is a highly sensitive test when testing infants at least 24 hours of age.¹⁰ In contrast, the prostatespecific antigen (PSA) test, a test commonly used to screen men for prostate cancer, is highly specific but has low sensitivity, especially at low PSA cutoff values of 4-10 ng/mL.¹¹ Thus, PSA cannot be relied on as the sole prostate cancer screening method.

Sensitivity also refers to the range over which a quantitative assay can accurately measure the analyte. In this context, a sensitive test is one that can measure low levels of the substance; an insensitive test cannot measure low levels of the substance accurately. For example, a digoxin assay with low sensitivity might measure digoxin concentrations as low as 0.7 ng/mL. Concentrations below 0.7 ng/mL would not be measurable and would be reported as <0.7 ng/mL. Whether the digoxin concentration was 0.69 ng/mL or 0.1 ng/mL. Therefore, this relatively insensitive digoxin assay would not differentiate between medication nonadherence with an expected digoxin concentration of 0 ng/mL and low concentrations associated with inadequate dosage regimens.

Specificity

Specificity refers to the percent of negative results in people without the disease (TN rate).^{8,9} Specificity assesses the proportion of TNs disclosed by the test (Table 1-2); the lower the specificity, the higher the chance of a false-positive result. A test with a specificity of 95% for the disease in question indicates

that the disease will be detected in 5% of people without the disease. Tests with high specificity are best for confirming a diagnosis because the tests are rarely positive in the absence of the disease. Several newborn screening tests (e.g., PKU, galactosemia, biotinidase deficiency, congenital hypothyroidism, and congenital adrenal hyperplasia) have specificity levels above 99%.¹² In contrast, the erythrocyte sedimentation rate (ESR) is a nonspecific test; infection, inflammation, and plasma cell dyscrasias increase the ESR.

Specificity as applied to quantitative laboratory tests refers to the degree of cross-reactivity of the analyte with other substances in the sample. Quinine may cross react with or be measured as quinidine in some assays, falsely elevating reported quinidine concentrations. Phenazopyridine interferes with urine ketone tests using sodium nitroprusside (e.g., Ketostix).

Specimen

A specimen is a sample (e.g., whole blood, plasma, serum, urine, stool, sputum, sweat, gastric secretions, exhaled air, cerebrospinal fluid, or tissues) that is used for laboratory analysis. Plasma is the watery acellular portion of blood. Plasma contains dissolved proteins (e.g., albumin, globulins, fibrinogen, enzymes, and hormones), electrolytes (e.g., sodium, potassium, chloride, calcium, and magnesium), lipids, carbohydrates, amino acids, and other organic substances (e.g., urea, uric acid, creatinine, bilirubin, ammonium ions). Serum is the liquid that remains after the fibrin clot is removed from plasma. Although some laboratory tests are performed only on plasma (e.g., prothrombin time, activated partial thromboplastin time [aPTT], D-dimer, and fibrinogen concentrations) or serum (e.g., albumin, creatinine, bilirubin, and acetaminophen concentrations), other laboratory tests can be performed on either plasma or serum (e.g., glucose, cortisol, electrolytes, and phenytoin concentrations). Some tests are performed on whole blood (e.g., blood gases, hemoglobin, hematocrit, complete blood count [CBC], and ESR).

LABORATORY TEST RESULTS

Units Used in Reporting Laboratory Results

Laboratory test results are reported with a variety of units. For example, four different units are used to report serum magnesium concentration (1 mEq/L = 1.22 mg/dL = 0.5 mmol/L = 12.2 mg/L). Additionally, the same units may be reported in different ways. For example, mg/dL, mg/100 mL, and mg% are equivalent units. Enzyme activity is usually reported in terms of units, but the magnitude varies widely and depends on the methodology. Rates are usually reported in volume per unit of time (e.g., CrCl is measured in mL/min or L/hr), but the ESR is reported in mm/hr and coagulation test results are reported in seconds or minutes. This lack of standardization is confusing and may lead to misinterpretation of the test results.

The International System of Units (Système Internationale d'Unités, or SI) was created about 50 years ago to standardize

7

quantitative units worldwide.¹³ Four base units and symbols are designated: length (meter, m), mass (kilogram, kg), time (second, s), and substance (mole, mol). Five derived units are designated: volume (liter, L, 10^{-3} m³), force (newton, N, kg ms⁻²), pressure (pascal, Pa, kg m⁻¹ s⁻²), energy (joule, J, kg m² s⁻²), and power (watt, W, kg m² s⁻³). However, it is difficult for clinicians to relate to molar concentrations (e.g., serum cholesterol 4.14 mmol × L⁻¹ versus 160 mg/dL, or HbA1c mmol/mL versus 8%). In the United States, most laboratory results are reported in conventional units.

Rationale for Ordering Laboratory Tests

Laboratory tests are performed with the expectation that the results will

- discover occult disease
- confirm a suspected diagnosis
- differentiate among possible diagnoses
- determine the stage, activity, or severity of disease
- detect disease recurrence
- assess the effectiveness of therapy
- guide the course of therapy

Laboratory tests are categorized as screening or diagnostic tests. Screening tests, performed in individuals without signs or symptoms of disease, detect disease early when interventions (e.g., lifestyle modifications, drug therapy, and surgery) are likely to be effective. Screening tests are performed on healthy individuals and are generally inexpensive, quick and easy to perform, and reliable, although they do not provide a definitive answer. Screening tests require confirmation with other clinical tests. Diagnostic tests are performed on at-risk individuals, are typically more expensive, and are associated with some degree of risk but provide a definitive answer.¹⁴

Comparative features of screening tests are listed in **Table 1-3**. Examples of screening tests include the Papanicolaou smear, lipid profile, PSA, fecal occult blood, tuberculin skin test, sickle cell tests, blood coagulation tests, and serum chemistries. Screening tests may be performed on healthy outpatients (e.g., ordered by the patient's primary care provider or performed during public health fairs) or on admission to an acute care facility (e.g., prior to scheduled surgery). Abnormalities identified during screening are followed by more specific tests to confirm the results.

TABLE 1-3. Comparative Features of Screening and Diagnostic Laboratory Tests			
FEATURE	SCREENING TEST	DIAGNOSTIC TEST	
Simplicity of test	Fairly simple	More complex	
Target population	Individuals without signs or symptoms of the disease	Individuals with signs or symptoms of the disease	
Characteristic	High sensitivity	High specificity	
Disease prevalence	Relatively common	Common or rare	
Risks	Acceptable to population	Acceptable to individual	

Source: Reference 15

Screening tests must be cost-effective and populationappropriate. The number needed to screen is defined as "the number of people that need to be screened for a given duration to prevent one death or one adverse event."¹⁶ For example, 84 women between the ages of 40 and 84 years need to undergo annual mammographic screening to prevent one death from breast cancer.¹⁷

Diagnostic tests are performed in individuals with signs or symptoms of disease, a history suggestive of a specific disease or disorder, or an abnormal screening test. Diagnostic tests are used to confirm a suspected diagnosis, differentiate among possible diagnoses, determine the stage of activity of disease, detect disease recurrence, and assess and guide the therapeutic course. Diagnostic test features are listed in Table 1-3. Examples of diagnostic tests include blood cultures, serum cardiac-specific troponin I and T, kidney biopsy, and the cosyntropin test.

Many laboratories group a series of related tests (screening and/or diagnostic) into a set called a profile. For example, the basic metabolic panel (BMP) includes common serum electrolytes (sodium, potassium, and chloride), carbon dioxide content, blood urea nitrogen (BUN), calcium, creatinine, and glucose. The comprehensive metabolic panel includes the BMP plus albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin, and total protein. Grouped together for convenience, some profiles may be less costly to perform than the sum of the cost of each individual test. However, profiles may generate unnecessary patient data. Attention to cost is especially important in the current cost-conscious era. A test should not be done if it is unnecessary, redundant, or provides suboptimal clinical data (e.g., non-steady-state serum drug concentrations). Before ordering a test, the clinician should consider the following questions:

- Was the test recently performed and in all probability the results have not changed at this time?
- Were other tests performed that provide the same information?
- Can the information be estimated with adequate reliability from existing data?

(For example, CrCl can be estimated using age, height, weight, and SCr rather than measured from a 24-hour urine collection. Serum osmolality can be calculated from electrolytes and glucose rather than measured directly.)

• What will I do if results are positive or negative (or absent or normal)? (For example, if the test result will not aid in clinical decisions or change the diagnosis, prognosis, or treatment course, the benefits from the test are not worth the cost of the test.)

Factors That Influence Laboratory Test Results

Laboratory results may be inconsistent with patient signs, symptoms, or clinical status. Before accepting reported laboratory values, clinicians should consider the numerous laboratory-specific and patient-specific factors that may influence the results (**Table 1-4**). For most of the major tests discussed in this book, a Quickview chart summarizes information helpful in interpreting results. **Figure 1-2** depicts the format and content of a typical Quickview chart.

Assay used and form of analyte	
Free form	
Bound form	
Clinical situation	
Acuity of disease	
Severity of disease	
Demographics	
Age	
Gender	
Ethnicity	
Height	
Weight	
Body surface area	
Drugs	
Drug-drug interactions	
Drug-assay interactions	
Food	
Time of last meal	
Type of food ingested	
Nutritional status	
Well nourished	
Poorly nourished	
Posture	
Upright	
Supine	
Pregnancy	
Specimen analyzed	
Serum	
Plasma	
Whole blood (venous or arterial)	
Cerebrospinal fluid	
Urine	
Stool	
Sputum	
Other (e.g., tissue, sweat, gastric contents, effusi	ons)

Time of last dose

QUICKVIEW | Contents of a Typical Quickview Chart

PARAMETER	DESCRIPTION	COMMENTS	
Common reference ranges			
Adults	Reference range in adults	Variability and factors affecting range	
Pediatrics	Reference range in children	Variability, factors affecting range, age grouping	
Critical value	Value beyond which immediate action usually needs to be taken	Disease-dependent factors; relative to reference range; value is a multiple of upper normal limit	
Inherent activity	Does substance have any physiological activity?	Description of activity and factors affecting activity	
Location			
Production	Is substance produced? If so, where?	Factors affecting production	
Storage	Is substance stored? If so, where?	Factors affecting storage	
Secretion/excretion	Is substance secreted/excreted? If so, where/how?	Factors affecting secretion or excretion	
Causes of abnormal values			
High	Major causes	Modification of circumstances, other related	
Low	Major causes	causes or drugs that are commonly monitored with this test	
Signs and symptoms			
High level	Major signs and symptoms with a high or positive result	Modification of circumstances/other related signs and symptoms	
Low level	Major signs and symptoms with a low result	Modification of circumstances/other related causes	
After event, time to			
Initial elevation	Minutes, hours, days, weeks	Assumes acute insult	
Peak values	Minutes, hours, days, weeks	Assumes insult not yet removed	
Normalization	Minutes, hours, days, weeks	Assumes insult removed and nonpermanent damage	
Causes of spurious results	List of common causes	Modification of circumstances/assay specific	
Additional information	Any other pertinent information regarding the laboratory value or assay		

FIGURE 1-2. Contents of a typical Quickview chart.

Laboratory-Specific Factors

Laboratory errors are uncommon but may occur. Defined as a test result that is not the true result, *laboratory error* most appropriately refers to inaccurate results that occur because of an error made by laboratory personnel or equipment. However, laboratory error is sometimes used to refer to otherwise accurate results rendered inaccurate by specimen-related issues. Laboratory errors should be suspected for one or more of the following situations:

- The result is inconsistent with trend in serial test results.
- The magnitude of error is great.
- The result is not in agreement with a confirmatory test result.
- The result is inconsistent with clinical signs or symptoms or other patient-specific information.

True laboratory errors (inaccurate results) are caused by one or more laboratory processing or equipment errors, such as deteriorated reagents, calibration errors, calculation errors, misreading the results, computer entry or other documentation errors, or improper sample preparation. For example, incorrect entry of thromboplastin activity (ISI [international sensitivity index]) when calculating the international normalized ratio (INR) results in accurately assayed but incorrectly reported INR results.

Accurate results may be rendered inaccurate by one or more specimen-related problems. Improper specimen handling prior to or during transport to the laboratory may alter analyte concentrations between the time the sample was obtained from the patient and the time the sample was analyzed in the laboratory.¹⁸ For example, arterial blood withdrawn for blood gas analysis must be transported on ice to prevent continued in vitro changes in pH, PaCO₂, and PaO₂. Failure to remove the plasma or serum from the clot within four hours of obtaining blood for serum potassium analysis may elevate the reported serum potassium concentration. Red blood cell hemolysis